Analysis of the step-diagonal test

Johannes A. Soons
National Institute of Standards and Technology, U.SA.

Abstract

The step-diagonal test modifies the diagona displacement test for machine tool
performance evaluation by executing a diagonal as a sequence of single-axis
motions. The proposed modification has gained interest because of the claim that
the obtained additional data enables the estimation of parametric machine errors,
in particular straightness and positioning errors. This paper addresses the
properties of the estimated errors for machines with significant angular errors.
The theoretical analysis shows that the estimated straightness and positioning
errors can have significant errors if the effects of several angular errors are not
corrected. A correction for some angular errors can be achieved by repeating a
step-diagonal with a different sequence of axis motions. The thus estimated
angular errors are expected to have larger uncertainties than those obtained
through direct measurement. Use of a retro-reflector eliminates the introduced
errors for some angular errors. Our analysis confirms that setup errors in the
alignment of the return mirror cause significant errors in the slope of the
estimated positioning errors that cannot be detected from the (step-) diagonal
measurements. Correction requires information on the slope of the positioning
errors of two axes. Finally, the analysis shows that it is not possible to uniquely
allocate non-repeatabl e machine behavior to the various parametric errors.

1 I ntroduction

The step-diagonal or vector-measurement technique [1,2,3] is a proposed method
to measure geometric errors of machine tools or coordinate measuring machines.
The test differs from the diagonal displacement test described in standards for
machine tool performance evauation (e.g., ASME B5.54:2005 and 1SO 230-
6:2002). The diagonal displacement test involves measuring errors in the actual
travel of the tool along a face or body diagonal. It provides samples for the
combined effects of parametric errors, but does not allow them to be estimated.
In the step-diagonal test, each new point on the diagonal is reached through a
seguence of single-axis motions. At the end of each axis step, the error in the tool
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Figure 1 Principle of the step-diagonal method and symbolism used.

displacement is measured along the diagonal using alaser interferometer (Figure
1). Two configurations have been proposed [1]. One has amirror attached to the
tool that reflects the laser beam back to the interferometer. This configuration is
applied in the field and is the focus of this paper. The second configuration has a
large retro-reflector as a target. The retro-reflector returns the beam to a mirror
on the workholding component of the machine, which in turn reflects the beam
back into itself to the interferometer. In both cases, the target has to be large
enough to return the laser beam when the tool is moved away from the diagonal.

For typical machines, angular errors during axis motions cause significant
errors in the position and orientation of the tool throughout the workzone, and an
assessment of their effects is important. Published methods to analyze data
obtained with the step-diagonal test either assume that the effects of the angular
errors are negligible, or aternatively, do not completely address these effects.

This paper explicitly addresses machines with significant angular errors. We
describe the characteristics of the obtained error estimates when angular errors
are ignored in the analysis. The combination of parametric errors that can be
estimated is identified. The presented analytical solutions illustrate key
properties of the obtained error estimates, but do not exploit some redundancies
in step-diagonal data to reduce uncertainties. The latter can be achieved using a
less-transparent linear regression approach where the identifiable error
combinations are simultaneously estimated using all measurement data. The
equationsin this paper form a basis for such an approach.

2 Basic equations

Analysis of the step-diagonal method is achieved through two models. The
kinematic model describes the errorsin the position and orientation of the tool as
a function of parametric machine errors, i.e., the positioning, angular, and
straightness errors of each axis and the errors in the alignment of axes. The task
error model describes the errors of atask, in this case the measurement of a step-
diagonal, as a function of the errorsin the position and orientation of the tool.
The kinematic model used assumes small angular errors, alowing for first-
order approximations of their effects, and rigid-body kinematics, yielding



Figure 2 The studied machine configuration

parametric errors that are only affected by the position of one machine axis. For
the machine depicted in Figure 2, the errors € =[ex,ey,ez] and € =[ex,ey,ez]
in the position and orientation of the tool can be expressed as

ex = ex(X) tex(y) +ex(2) +[ey(x) +ey(y) - Se]xz- [e2(X) + Sylxy
ey = ey(X) +ey(y) +ey(2) - [ex(X) +ex(y) + Sy] <

€z = €z(X) +ez(y) +ez(2) +ex(X) xy

ex = ex(X) +ex(y) +ex(2)

ey =ey(X) +ey(y) tey(2)

ez = ez(x) +ez(y) +ez(2),

@

where ex(y) and ex(y) , for example, denote the trandation and angular errors
infaround X when moving Y. The squareness errors Sxy, Syz and Syxz have a
positive value if the angle between the machine axes exceeds 90°. The position
of the coordinate frame used, i.e., the reference lines where the parametric errors
are defined, is arbitrary but affects the values of the positioning, straightness, and
Sguareness errors.

The sensitive direction of both diagonal and step-diagonal measurements is
determined by the direction n of the laser beam. For diagonal measurements, the
beam intersects the target mirror nominally at the same point. We define this
intersection as the point of the tool whose position errors are described by the
kinematic model. This yields the following equation for the error ddy2 in a
diagonal displacement di2 between positions pp and pz:

ddi2 = n>{&(p2)- é(p)] )
For a step-diagonal measurement, we consider a machine position pg that is not

on the diagonal (Figure 1). At this position, the laser beam intersects the target
mirror with normal m at an offset a defined by:
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The offset a yields an Abbe offset for the angular errors € of the tool, resulting
in an additional term fx(&(P3)” &) in the observed displacement error dd; 3.
This term is not present when a retro-reflector is used as target. Thus the
respective step-diagonal measurements are not sensitive to angular errors that
only affect tool orientation (Y-axis yaw and the angular errors of the Z-axis),
unless repeated with a different tool offset.

Setup errors may cause a misalignment of the laser beam and the return
mirror relative to the machine axes. A misalignment of the laser beam changes
the offset a and the sensitive direction, resulting in second-order measurement
errors. A misalignment €y, of the return mirror relative to the machine axes,
however, results in a first-order error NX€m” &) due to the offset a in the
position of the beam on the mirror. The error equals the misalignment angle in
the plane spanned by the laser beam and the tool path timesthe travel |a| of the
laser spot on the target. The error reduces to zero for positions on the diagonal .
The same first-order error occurs for the retro-reflector configuration. Here the
offset on the return mirror is doubled, but the resulting error occurs in only half
of the laser path between reference and tool. In most setups, the laser beam is
first aligned to the machine motion, after which the mirror is aligned to the laser.

For the two configurations, the observed error ddi,3 when moving from a
point pp on the diagonal to an arbitrary point p3 can now be summarized as.

Mirror : dd1,3 = i{ &(pa) - &(pr) +(E(Pa) +&m)” (pL- P3)]

Retro- reflector: ddy.3 = i &(p3)- &(p) +ém” (PL- P3)] @

3 Diagonal displacement measurements

In this section we analyze the sensitivity of diagonal displacement measurements
between the corners of the workzone to the parametric errors Application of
Equations (1) and (2) yields for the errors of body diagonals AG and DF (Fig. 2):

dDac = nx[ Dex(x) + Dex(y) + Dex(2) +(Dey(x) + Dey(y) - Sxz)>XDZ
- (Dez(X) + Sy ) DY ] +
ny [ Dey(x) + Dey(y) + Dey(2) - (Dex(y) + Syz)xDZ] +
nz [ Dez(x) + De;(y) + Dez(2) ]

Q)

dDpr = nx [ Dex(x) - Dex(y) +Dex(2) +(Dey(X) - Sxz)XDZ + Sxy DY]
ny[- Dey(x) +Dey(y) - Dey(2) +(Dex(X) + Sy, ) xDZ] + (6)
nz[ Dez(X) - Dez(y) + Dez(2)],



where, for example, Dex(y) denotesthe total change in the pitch error ex(y) of
the Y-axis over the evaluated axis travel DY, and nx, ny and n; are the
direction cosines of diagonal AG. Combining the measurements of all four body
diagonals, each with anominal length D , yields:

dDaG +dDgH +dDcg +dD DZ DY
AET T =y Dex(X) + - Dey () - — - Dez(X)]

#ny[Dey(y) - - Dex(y)]+ Nz Dex(2)

- dDaG - dDpH +dDcg +dDpF Dex(y) . (Dey(2) | Dez(Y)]

(")

= + 8
4D nyn, Sty ov | ®
- dDaG +dDgH +dDce - dDpF _ Sy - Dey(X) Dey(y)
4D nyhy 2 2 ©)
_DYDe() Dex(d) , De:(¥),
2DX Dz DX
-dDag +dDgH - dDcg +dDpE — Sxy + Dez(x) + Dz Dex(x)
4D nyny 2 2DX (10)
Dz Dey(y) [Dex(y) . Dey(X)]
2DY DY DX

In Equation (7), the angular errors modify the positioning errors to represent
positioning errors at lines through the center of the workzone The squareness
errors in Equations (8-10) are similarly modified to represent the average of
alignment errors at the edges of the workzone. The straightness terms equal zero
if straightness errors are modeled relative to the line through the axis end-points.

The equations show that errors in the total diagonals yield information on the
“average” sguareness errors and one linear combination of the modified
positioning errors. Thus small diagonal errors do not imply small parametric
errors, as the latter can compensate each other for the diagonal displacements
[4]. The dope of positioning errors requires particular care, as exact
compensation can occur for all points on a diagona. Estimating squareness
errors from diagonal measurements is challenging [4]. The sensitivity is affected
by the aspect ratio of the addressed workzone The best estimate is obtained for a
machine with equal axis lengths, using face diagonals. For a machine with aspect
ratio DX : DY :DZ =1:b: c, the uncertainty u(Sxy) of the estimated squareness
error is related to the relative uncertainty u(dD)/D in the measurement of a
diagonal D by:

1 u(dD) _1+b?+c? u(dD)
2|nxny| D 2b D

U(Syy) = (11



4 Two-dimensional step-diagonal measurements

Face-diagonal measurements have an increased sensitivity to a reduced number
of machine errors. In this section, we analyze the information obtained from
step-diagonal measurements in a plane of two machine axes when the mirror is
attached to the tool. At the end of the section we discuss the retro-reflector setup.

Figure 3 shows the evaluated measurements in the bottom XY -plane. Each
new target point i +1 on the diagonal corresponds to one new target point for
each axis, yielding 2 3=6 new parametric eror vaues that affect the
measurements:  ex(X+1), ey(Xi+1), €z(Xi+1), ex(¥i+1), ey(yi+1) and
ez(yi+1) . The new point on the diagonal can be reached by two sequences of
unidirectional single-axis motions, yielding four measurements for the errorsin
the change in laser reading during a single-axis step: ddag, ddgc, ddap, and
ddpc - The four measurements are not independent, however, as the sum of the
systematic errors during both sequences equals the diagonal displacement error,
i.e, ddag+ddgc =ddap +ddpc =ddac. In other words, the differences
between errors of parallel steps have an equal value:ddpc -ddag =ddgc -ddap -

Let Dex(xi) denote the change ex(Xi+1) - ex(Xi) in the positioning error of
the X-axis when moving over a distance Dx from position X to Xj+1.
Application of this notation to the equations of Section 2 yields:

dd ag (i,1) = nx Dex(x) +ny Dey(x) - NxyiDez(x)
- nxny d [ez(x) + Dez(x) +ez(yi) +eml
ddac (i,i) = nx Dex(yi) + ny Dey (i) + nxny d [e2(Yi) - Sxy +eml (13)
ddag(i,i) - ddpc(i,i) = nxny d Dez(yi) (14
ddag (i, k) = ny Dex(x) - ny Dey(x) - nxykDez(x)
+nxnyd[ez(X) +ez(yk) +em2]

(12)

(15)
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Figure 3 The evaluated step-diagonal measurements



ddpa(i, k) = -ddap (i, k) (16)
= - nx Dex(yk) + ny Dey(yk) - nxny d [ez(yk) - Sxy +emz]
dd ag (i,k) - ddpc (i, k) = - nxny d Dez (yk), 17)

where ny and ny are the direction cosines of diagonal AC, d is the nominal
length of a diagonal step, and enyq isthe error in mirror alignment for diagonal
1. Note that an error e, in mirror alignment causes equal but opposite errors
Ny Ny d ey, in measured displacements during X- and Y -axis moves.

The difference between the errors of parallel segments of a diagonal step, e.g.,
ddpc -ddag, is not affected by systematic errors in positioning, straightness,
and sguareness, as both segments have the same axis motion and sensitive
direction. The difference is also not affected by any angular error that has the
same constant value for both segments (Figure 4). Thus an error ey, in mirror
orientation cannot be detected from the results of a step-diagonal measurement.
Furthermore, the difference is not affected by a change in the angular error of the
machine axis that carries the other axis (Dez(X) in this example, see Figure 4).
The center of rotation of this angular error is fixed during the motion of the other
axis, and as a result does not affect the relative distance and parallelism of the
mirror surface when moving thisaxis Therefore, it does not cause an error in the
respective segments ddgc and ddap , and by extension in the difference ddgc -
ddap = ddpc -dd ap . It does cause an equal error in both ddpc and ddag -

The only systematic error that causes a difference between parallel segments
of adiagonal step isthe change in Y-axisyaw Dez(yj) . This alows this error to
be estimated irrespective of errors in mirror alignment (Equation 14). The
uncertainty is affected by non-repeatable measurement and machine errors:

(Dey(y) = 12 W),

18
iny| Dx (18)
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Figure 4 The difference between the errors of parallel
segments, e.g., ddpc - ddag, isnot affected by a constant
error in mirror orientation or a change in X-axis yaw.



For a step size of 100 mm in each axis, a standard deviation of 1 um in ddag
and ddpc Yyields a standard deviation of 20 prad in the estimated change of the
angular error. Although the small Abbe offset used in the estimation resultsin a
relatively high uncertainty, it may be possible to use the estimated error to
compensate step-diagonal measurements, since its leverage is determined by a
similar small offset.

As differences between parallel segments of a diagonal step only yield Y-axis
yaw, there is only information left to estimate four independent combinations of
parametric errors. Estimates for the change in positioning errors are obtained as:

ddag(i,i) +ddag (i, k) = Dey(X) - MDez(Xi)"'
2ny 2 (19
%[ez(yk) - ez2(¥i) +emz2 - em]

ddpc (i,i) - ddap (ki)
2ny

= Doy (y1) + > lem - ema]. @)

The first two terms of Equation (19) can be interpreted as the change in the
positioning error of the X-axis at a line through the center of the workzone The
estimate is affected by the difference in mirror misalignment of both diagonals.
Since the positioning error is obtained by adding the obtained estimates for the
changes in the positioning error, the contamination accumulates [4]. Theresult is
an error in the dope of the estimated positioning error, yielding an error equal to
-1/2 (emL- em2) XDY for the total axis range. Thus, even small errors in
mirror alignment cause significant errors in the estimated positioning error [4].
For the Y-axis, the mirror misalignment causes an opposite error in the estimated
positioning error equal to 1/2 (en - em2) XDX . The ratio of the errors is such
that they compensate each other for diagonal displacement measurements. They
can only be corrected using a separate measurement for the slope of the
positioning error of one of the axes. The estimated yaw error of the Y-axis can
be used to further correct the obtained X-axis positioning error. The effect of a
linear term in Y-axis yaw on the positioning error equals zero, as well as its
contribution over the total axis range.
Estimates for the straightness errors ey (%) and ex(y;j) are obtained as.

ddag(i,i) - ddaB(i, k)
2ny

= Dey()(i)"'%[xk - Xi+1] Dez(x) - Dxez(xi)
(21)

- Pfez(yi) +ez(yk) +em +emz]

ddpc (i,i) +dd ap (ki)
2Ny

=Dex(w)+Dy[ez(w)-sxy+W%]. (22)



Removing the slope through the estimated straightness errors also removes errors
due to mirror misalignment. The squareness error lost in this process can be
estimated from the diagonal measurements using the procedure of Section 3
[2,4], thus avoiding errors due to mirror misalignment.

The estimated straightness error is affected by yaw errors, and compensation
may be required to abtain reliable estimates. The first two terms of Equation (21)
can be interpreted as the change in the straightness error of the X-axis measured
at a variable tool offset such that the functional point of the tool is at the center
of the X-axis. X-axis yaw acts on this variable tool offset, and the large offset at
the end-points of the axis may result in large errors in the estimated straightness.

The estimates for the changes in straightness errors contain aterm Dxez(X)
or Dy ez(yi), that after summation approximates the integrated yaw error. A
yaw error of 1 prad/m of axis travel yields a parabolic straightness profile with a
peak-to-valley error of 1/8 um/m? Theintegral can approximate the straightness
profile of an axis whose straightness is determined by the guideway geometry. In
that case, the obtained result does not contain information on straightness errors.

Reversal errors can be obtained by executing the step diagonals in both
directions. Combining segments with the same direction of axis motion,
including reversal motions, yields estimates for the uni-directional axis errors
and their difference. Estimation of the repeatability of a parametric error requires
care due to averaging, and may be affected by the repeatability of other
parametric errors. For example, a non-repeatable positioning error, characterized
by a standard deviation s(Dex(xj)), affects the repeatability of the estimated
straightness error Déy(x;) of that axis:

2 _2né :
5 s2(ddaB) = = 52 (Dex(x) + - (23)

4ny 4ny2

2

s2(Dey (%)) =

In the step-diagonal method, a parametric error is constructed as the cumulative
sum of estimates for its change during incremental axis motions. This resultsin
an accumulation of uncertainties introduced by non-repeatable measurement and
machine errors whose value changes during the required incremental motion of
the other axis, e.g., dueto vibrations. In general, the resulting uncertainty will be
proportional to the square root of the number of incremental steps of an axis.

Step-diagonal measurements with a retro-reflector are not affected by errors
in the orientation of the tool (Equation 4). This simplifies the anaysis and
reduces the errors in the estimated positioning and straightness errors when
angular errors are not corrected. Ignoring the effects of mirror misalignment,
which are similar to those of the other configuration, yields:

QD ELDCL) - pe, (q) - AVt pey () @

Nx 2

ddBC(ivi)z' ddpc (ki) = Dey (yi) + Dxez(xk+1) - €2(%i+1) (25)
Ny 2




ddag (i, i) - ddpc (i, k) _ o Xk - X _
2ny = Dey (%) +———Dez(x) (26)

ddpc (i,i) +ddpc (ki)

= De()- D[Sy + 2t zealilaay )

2ny 2
ddag(i,i) - ddpc(i,i) = nxny d Dez(X). (28)
5 Three-dimensional step-diagonal measurements

In this section we anadyze the results of three-dimensional step-diagonal
measurements for the configuration where the target mirror is attached to the
tool. Each new point on a diagonal can be reached through six different
sequences of unidirectional single-axis movements. This provides for a
maximum of seven new measurements, corresponding to the laser readings at the
new corners of the cuboid spanned by the single-axis motions. The respective
information is contained in the measurement of one edge of the cuboid per axis,
and four independent differences between parallel edges. As in the two-
dimensional case, the two differences between the parallel edges of a face have
an equal value, yielding 6- 1=5 independent constraints on the 12 edges. The
findings of Section 4 show that, for rigid-body kinematics, the differences
between parallel edges are only affected by the change in the angular errors of
the Y- and Z-axes. Application of Equation (4) shows that a difference is not
affected by the change in the pitch, Dey(y), of the Y-axis. The remaining
angular errors can be estimated by solving the system of equations obtained from
differences observed for two diagonals with adifferent directioninY or Z, eg.,:

ddpc(i,i,i)- dda(i,i,i) =DxnzDey(yi)- DxnyDez(yi) (29
dder (i,i,i) - ddaB(i,i,i) =DxnzDey(z)- DxnyDez(z) (30
dden (i,i,i)- ddap(i,i,i) =-DynzDex(z)+DynxDez(z) (31
ddpc (i,i,k) - ddag(i,i,k) =DxnzDey(yi)+DxnyDez(yi) (32)
dder (k,k,i) - ddag(k,k,i) =DxnzDey(z)+DxnyDez(z) (33)
ddeH (k,k,i) - ddap(k ki) =- DynzDex(z) - DynxDez(z), (34)

where each diagonal has a positive direction cosine in Z. With the estimation of
the above angular errors we have exhausted the information in the differences
between parallel edges. This leaves three edges per new point on adiagonal, one
for each axis Combining edges parallel to Z for the four step-diagonals yields:

ddcgiii +ddpp kii +dd agkki +ddggiki
4an,

ddcgiii - ddpp kii - dd ogkki +ddggiki
4ny

=De,(z) (35)

=Dex(z) - Dz[Sz +ey(z)]  (36)



ddcgiii +ddppkii - Ddagkki - Ddpriki
SO AR = Dey(2) + Dal- Sy +ex(a)] (37)
Yy

ddcgiii - ddppkii +dd agkki - ddgriki =0, (38)

where errors due to mirror misalignment have been ignored. For Z-axis motion,
the mirror misalignment causes an error nz dxy em in each measurement, where
em is the misalignment angle of the mirror around a horizontal axis parallel to
the mirror surface, and dyy the length of the diagonal step in the XY plane. This
yields an error in the estimated positioning error of the Z-axis equal to the
average mirror misalignment angle times the total length of the diagonal in the
XY plane. The angular machine errors affect the estimated straightness errorsin
a manner similar to the two-dimensional case. A correction can be obtained
using separate measurements for the angular errors, or the estimates for the
angular errors obtained from measurements of parallel edges (Equations 29-34).
Combining the errors observed for edges parallel to the Y-axis yields:

ddpciii +ddapkii - ddpciik - ddapkik _

N 4t )
an, Dey (Vi) - ———Dex(Vyi)

2

(39)
Dz
- 7[8)((25)- ex(z)]
ddpciii - ddapkii - ddgciik +ddpakik D+ Z
BC AD BC DA = Dey (Vi) + Zi +Zx+1 Dey (i)
4ny 2 (40)
2ez(yi) +e +e
+Dy[- Sy + z(Vi) 22(3) z(Zk)]
ddgciii +dd apkii +ddgciik +dd apkik - Y
BcHl ADKII Bcll ADKX — pe, (yi) + Yk - Yi+1 Dex (Vi)
4n, 2 (41)
2ex(yi) +ex(z) +ex(z)
- Dyl 5 ]
ddgciii - dd apkii +ddpgciik - dd apkik k- Z
BC AD - BC ADKIK _  Zx - Zi+1 Dey (i)
Ny 2 42)

+%{ez(a)- ex(2)].

The first two terms of Equation (39) yield the positioning error of the Y-axis at a
line through the center of the workspace. The result is affected by the pitch error
of the Z-axis motion. The first two terms of Equation (40) yield the straightness
error of the Y-axis in X at aline through the center of the workspace. The first
two terms of Equation (41) yield the “straightness’ error of the Y-axis in Z,
measured at a variable tool offset such that the tool is at the center of the Y-axis.
Equation (42) can, in principle, yield an estimate for the change in the roll error
of the Y-axis. The respective uncertainty increases near the center of the axis.
Combining the errors observed for edges parallel to the X-axis yields:



dd agiii - dd agikk - dd agiik +dd agiki
4ny

:Dex(><i)+%Dey(Xi)

43
- AN Dy () - 2 fea(y) - eyl + xley(a) - ey(2)
dd agiii +ddagikk - dd agiik - dd agiki "+ Z
AB AB y AB AB = Dey (%) - Zi + Zk+1 Dey (%)
Ny 2
+ X X De, (%) - szez(xi)+ez(Yi)+ez(Yk)+ez(Z)+ez(2k)
2 2
dd agiii +dd agikk +dd agiik +dd agiki Vi + Yk+1
=De,(X ) + Dey (X;
an (%) > x(X) -
X '2Xi+1 Dey(xi)+szey(xi)+ey()’i)+eyé)’k)+ey(2i)+ey(2k)
dd agiii - ddpaikk +ddgaiik - dd agiki
=Dz[ey(y;)- e
2 [ey(yi) - ey(yk)] (46)

- Dy[ez(z) - ez(z)] -

The first three terms of Equation (43) yield the positioning error of the X-axis at
a line through the center of the workspace. The first three terms of Equations
(44) and (45) yield the “straightness’ error of the X-axis at a line through the
center of the workzone, measured at a variable tool offset such that the tool is at
the center of the X-axis The last terms in Equations (44) and (45) result in an
approximation of the integrated average pitch and yaw errors for each of the
points used in the estimation.
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